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Abstract
In clinical practice, physicians rely on predictive models to assess disease risk and de-
termine optimal treatments based on patient-specific features, such as demographic data
and lab results. While more comprehensive models incorporating a wide range of features
tend to offer higher accuracy, the associated costs—whether financial, temporal, or health-
related—pose significant constraints. This paper addresses the challenge of optimizing the
cost-benefit of diagnostic tests by introducing a novel approach that adapts to the unique
characteristics of each patient. We propose a reinforcement learning-based methodology,
framed within the Q-learning framework, to optimize the selection and sequencing of diag-
nostic tests, balancing the need for accurate predictions with the cost of feature collection.
Additionally, our algorithm effectively handles informative missing data through a novel
importance weighting procedure, ensuring robust performance even when critical predictors
are not fully observed. This approach enhances the efficiency and effectiveness of clinical
decision-making by minimizing costs while maintaining high predictive accuracy. Through
theoretical development, practical applications, and empirical validation, we demonstrate
the advantages of this cost-benefit optimization strategy in clinical settings.

1. Introduction

In modern medicine, accurate diagnoses and effective treatment plans often depend on
extensive diagnostic data (Jutel, 2024). While comprehensive testing can enhance clinical
decision-making, practical constraints such as time and cost make it infeasible to subject
every patient to exhaustive evaluations. In practice, most patients require only basic, low-
cost tests, whereas severe or complex cases necessitate more expensive and extensive testing
(Kent et al., 2023; Martin et al., 2017). Mismatches between diagnostic intensity and
patient needs can have serious repercussions: insufficient testing may lead to missed or
delayed critical diagnoses, negatively impacting patient outcomes and increasing healthcare
costs (Karunathilake and Ganegoda, 2018), while excessive testing can impose unnecessary
financial and procedural burdens without proportional benefits (Müskens et al., 2022; Rao
and Levin, 2012). Striking a balance between diagnostic cost and accuracy is therefore
crucial.

Traditional feature selection methods, such as Lasso and other regularization-based ap-
proaches (Tibshirani, 1996; Hastie et al., 2017), optimize predictive features for static mod-
els. However, these methods overlook the dynamic nature of clinical decision-making, where
test selection evolves in real-time based on the collected patient information and resource
constraints. In practice, diagnoses are often achieved through sequential testing, reflecting
the conditional and hierarchical relationships among tests (Grobbee et al., 2020). For exam-
ple, in cardiovascular disease evaluation, initial non-invasive tests (e.g., electrocardiograms
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or blood tests) may lead to more specialized procedures, such as cardiac catheterization,
depending on the results of earlier tests.

To optimize the cost-benefit of diagnostic tests in clinical decision-making, this paper
focuses on structured test sequences, where each test provides information that influences
subsequent selections. Given a predefined sequence of available tests, after completing
the k-th test, the set of subsequent options is restricted to those following it in the se-
quence, while preceding tests are no longer available. Importantly, intermediate tests may
be skipped if deemed unnecessary, guided by the evolving data. The process concludes once
sufficient information is obtained for a confident diagnosis. Thus, the resulting sequence is
a subsequence of the original tests, maintaining the predefined order. Figure 1 illustrates all
possible outcomes when only two tests are available. We term this framework the sequential
lab test problem.

Figure 1: Illustration with two available tests.

A key challenge in this setting is handling missing data, which arises naturally in train-
ing datasets due to the sequential nature of testing. These missing values are typically not
random but are systematically linked to patient histories and prior test outcomes—a phe-
nomenon known as informative missingness. Ignoring this issue can lead to biased models
and poor predictive performance, underscoring the need for specialized methodologies to
address it.

While limited research exists on this topic, some related works offer partial solutions.
Bryan (2023) proposed a Q-learning framework for dynamic prediction, but their approach
assumes that all patients undergo every possible test, limiting its practical applicability.
Reinforcement learning-based methods, such as those by Zhu et al. (2015), rely on an initial
high-quality prediction model, which is often unavailable in practice. Other frameworks,
such as that of Xu et al. (2021), dynamically select features but produce static final models
for all individuals. Additionally, methods for optimizing dynamic treatment regimes (DTRs)
(Murphy, 2003; Nahum-Shani et al., 2012; Zhao et al., 2015) consider long-term treatment
effects, making them unsuitable for the sequential lab test problem.

To address these limitations, we propose a novel algorithm, COST-Q (Cost-Optimized
Sequential Testing with Q-learning), specifically designed for datasets with informative
missingness. COST-Q innovatively estimates missing data from prior steps using model
outputs from subsequent steps and incorporates estimated missing probabilities to mitigate
biases caused by informative missingness. By emphasizing practical applications, our ap-
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proach enhances the efficiency and accuracy of diagnostic processes, reduces unnecessary
testing, and improves patient outcomes.

The remainder of this paper is organized as follows: Section 2 formulates the problem,
Section 3 introduces our proposed method, Section 4 presents theoretical results, Section 5
provides experimental results, and Section 7 concludes the paper.

2. Problem Setup
We consider a sequential testing problem involving M + 1 available tests. While we focus
on the case M = 2 in this paper, the proposed method can be generalized to any M . Let
(X0, X1, X2) represent the outcome of all possible features, where X0 ∈ Rp0 denotes the basic
information that is always available for every patient without cost, and Xj ∈ Rpj , j = 1, 2
represents the results of the j-th test. The patient’s true outcome is denoted by Y ∈ R.
For instance, in our real data example, ...We will denote the space of continuous functions
from Rd to A as C(Rd, A), where A is the target space.

To address the incomplete nature of the data, we introduce test availability indicators
S1, S2, where Sj = 1 if the j-th test is performed and Sj = 0 otherwise. Test availability de-
pends on existing information: S1 is determined by X0, while S2 depends on (X0, S1X1, S1).
Specifically, we model test availability using:

π((X0), 1) = P(S1 = 1 | X0) and π((X0, S1X1, S1), 2) = P(S2 = 1 | X0, S1X1, S1). (1)

This model naturally leads to the following independence assumption:

Assumption 1 (Independence) We assume that (Y,X1, X2) ⊥ S1 | X0 and (Y,X2) ⊥
S2 | (X0, S1X1, S1).

Under this setup, the observed data for n samples is:

D = {(Y i, X i
0, S

i
1X

i
1, S

i
2X

i
2, S

i
1, S

i
2)}ni=1,

where each (Y i, X i
0, S

i
1X

i
1, S

i
2X

i
2, S

i
1, S

i
2) is an independent copy of (Y,X0, S1X1, S2X2, S1, S2).

Beside the above data, we also need a set of predictive models m’s with different com-
binations of predictors as inputs to predict Y , represented by

m0(x0),m1(x0, x1),m2(x0, x2),m12(x0, x1, x2).

For simplicity, these models are assumed to be pre-specified, though we discuss their esti-
mation in Section 3.4.

To evaluate predictive performance, we use a loss function L(Y,m(x)) to quantify the
error between predicted and actual outcomes. Examples include: L(Y,m(x)) = ∥Y −m(x)∥2
(continuous outcome) and L(Y,m(x)) = Y logm(x)+(1−Y ) log(1−m(x)) (binary outcome).
In addition to accuracy, we consider the cost of each test, denoted as c1 and c2, which are
given and assumed to be on a scale comparable to the loss function. There have been
many works on evaluating the cost-effectiveness of different diagnostic tests (Detsky and
Naglie, 1990; Snowsill, 2023). The combined loss accounts for both prediction error and test
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costs, enabling a more comprehensive evaluation of test strategies. The combined losses for
different test combinations are defined as:

Err0(Y, x0) = L(Y,m0(x0)),

Err1(Y, x0, x1) = L(Y,m1(x0, x1)) + c1,

Err2(Y, x0, x2) = L(Y,m2(x0, x2)) + c2,

Err12(Y, x0, x1, x2) = L(Y,m12(x0, x1, x2)) + c1 + c2.

(2)

For simplicity and to avoid repetition, we adopt shorthand notations such as Err0 =
Err0(Y,X0), Erri0 = Err0(Y

i, X i
0), Err1 = Err1(Y,X0, X1), Erri1 = Err1(Y

i, X i
0, X

i
1),

where the arguments are clear from the context.
Our goal is to develop an optimal decision function that guides the selection of diagnostic

tests based on the available patient information. Specifically, we construct a sequence of
deterministic classifiers, d = (d0, d1), defined as follows:

1. d0(x0) ∈ {0, 1, 2} determines the first action based on the basic patient information:

• d0(x0) = 0: no additional tests are performed; the prediction is made using
m0(x0).

• d0(x0) = 1: the first test X1 is performed, and d1 determines the subsequent
action.

• d0(x0) = 2: the second test X2 is performed, and the prediction is made using
m2(x0, x2).

2. d1(x0, x1) ∈ {0, 2} the next action after the first test X1:

• d1(x0, x1) = 0: no further tests are performed; the prediction is made using
m1(x0, x1);

• d1(x0, x1) = 2: the second test X2 is performed, and the prediction is made using
m12(x0, x1, x2).

In order to define the optimal decision function, we need to introduce the Q-function
first. Given a decision policy d = {d0, d1} where d0 : Rp0 → {0, 1, 2} and d1 : Rp1 → {0, 2},
the Q-function is the conditional expected loss under the policy d, which is defined as

Qd1
1 (X0, X1) = E [Err1I(d1(X0, X1) = 0) + Err12I(d1(X0, X1) = 2) | X0, X1] ,

Qd
0(X0) = E

[
Err0I(d0(X0) = 0) +Qd1

1 I(d0(X0) = 1) + Err2I(d0(X0) = 2) | X0

]
,

(3)
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where I(·) is the indicator function. Then, the optimal decision function minimizes the
Q-function at each decision stage:

d∗1(X0, X1) = argmin
d1:Rp1→{0,2}

Qd1
1 (X0, X1)

= argmin
d1:Rp1→{0,2}

E [Err1I(d1(X0, X1) = 0) + Err12I(d1(X0, X1) = 2) | X0, X1]

= 2I (E[Err1 − Err12 | X0, X1] > 0) ,

d∗0(X0) = argmin
d0:Rp0→{0,1,2}

Qd
0(X0)

= argmin
d0:Rp0→{0,1,2}

E [Err0I(d0(X0) = 0) +Q∗
1I(d0(X0) = 1) + Err2I(d0(X0) = 2) | X0]

=


0, if E[Err0(Y,X0) | X0] ≤ min{E[Q∗

1(X0, X1) | X0],E[Err2(X0, X2) | X0]},
1, if E[Q∗

1(X0, X1) | X0] < min{E[Err0(Y,X0) | X0],E[Err2(X0, X2) | X0]},
2, if E[Err2(X0, X2) | X0] < min{E[Err0(Y,X0) | X0],E[Q∗

1(X0, X1) | X0]},

where

Q∗
1 = Q∗

1(X0, X1) = E [Err1I(d
∗
1(X0, X1) = 0) + Err12I(d

∗
1(X0, X1) = 2) | X0, X1] .

We will also use d∗ = (d∗0, d
∗
1) to denote the optimal decision function, which sequentially

minimizes the total expected loss, considering both test costs and prediction errors.

3. Method
We now introduce the COST-Q algorithm, designed to learn the optimal decision function
d∗. Since the goal is to minimize cumulative loss, the optimal decision d∗0 depends on
subsequent decisions, particularly d∗1. From the definition of Qd

0 and Qd1
1 , it is evident that

Qd
0 depends on both d0 and d1, while Qd1

1 only depends on d1. These dependencies motivate
a backward Q-learning approach, where we first estimate d∗1 and subsequently d∗0.

3.1 Step 1: Estimating d∗1

Let us initially disregard the issue of informative missing data. In this simplified scenario,
a common approach to finding d∗1 is to directly optimize the empirical version of Qd1

1 :

d̂1 = argmin
d1:Rp1→{0,2}

n∑
i=1

[Erri1I(d1(X
i
0, X

i
1) = 0) + Erri12I(d1(X

i
0, X

i
1) = 2)].

However, due to the nonconvexity of the loss function, directly optimizing this expression
is computationally challenging. While relaxation techniques (e.g., surrogate loss functions)
are commonly used in literature, recent studies suggest that such relaxations can intro-
duce biases in sequential testing settings (Laha et al., 2024). To address this, we propose
an alternative approach to estimate d∗1. Specifically, the optimal decision rule d∗1 can be
expressed in terms of the difference between Err12 and Err1:

d∗1(X0, X1) = 2I(∆∗
12|1(X0, X1) > 0), (4)

5



where
∆∗

12|1(X0, X1) = E[Err12 − Err1 | X0, X1].

Now we only need to estimate ∆∗
12|1, and we shall take informative missing back into our

consideration. The following proposition give us the idea on how to estimate ∆∗
12|1 on

informative missing data.

Proposition 1 For samples with S1 = 1, π((X0, S1X1, S1), 2)
−1 serves to adjust for the

missingness in S2. Specifically:

∆∗
12|1(X0, X1) = E

[
Err12I(S2 = 1)

π((X0, S1X1, S1), 2)
− Err1 | X0, S1X1, S1 = 1

]
.

The proof of all of the Propositions is given in Supplement A.1. According to Proposition
1, we immediately derive that

∆∗
12|1(X0, X1) = argmin

∆:Rp0+p1→R
E

[(
Err12I(S2 = 1)

π((X0, S1X1, S1), 2)
− Err1 −∆(X0, X1)

)2

| S1 = 1

]
.

Thus we can estimate ∆∗
12|1(X0, X1) by

∆̂12|1(X0, X1) = argmin
∆∈H d

12|1

n∑
i=1

[
Erri12 ·

I(Si
2 = 1)

π̂((X0, X1, 1), 2)
− Erri1 −∆(Xi

0, X
i
1)

]2
· I(Si

1 = 1),

(5)
where π̂((X0, S1X1, S1), 2) is the estimated π((X0, S1X1, S1), 2), whose estimation will be
discussed in Section 3.3. H d

12|1 ⊂ C(Rp0+p1 ,R) is the model space for ∆̂12|1, which can
be chosen either parametric or non-parametric based on the specific model chosen. Conse-
quently, a variety of methods, such as Random Forest or kernel regression, can be employed
to solve this problem concretely. In this paper, we focus on Neural Networks, which have
demonstrated effectiveness in numerous prediction tasks. Now we can define the corre-
sponding estimator of d∗1 as

d̂1(X0, X1) = 2I(∆̂12|1(X0, X1) > 0). (6)

3.2 Step 2: Estimating d∗0

Next, we estimate d∗0. Similar to d∗1, d∗0 can be expressed in terms of the differences:

∆∗
1|0(X0) = E[Q∗

1 − Err0 | X0], ∆∗
2|0(X0) = E[Err2 − Err0 | X0].

The optimal d∗0 is then given by

d∗0(X0) =


0, if 0 ≤ min{∆∗

1|0(X0),∆
∗
2|0(X0)},

1, if ∆∗
1|0(X0) < min{0,∆∗

2|0(X0)},
2, if ∆∗

2|0(X0) < min{0,∆∗
1|0(X0)}.

(7)

For informative missingness, Proposition 2 provides the required adjustments.
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Proposition 2 The importance weights π((X0), 1)
−1 and π((X0, S1X1, S1), 2)

−1 adjust for
missingness when estimating ∆∗

1|0(X0) and ∆∗
2|0(X0), respectively:

∆∗
1|0(X0) = E

[
Q∗

1I(S1 = 1)

π((X0), 1)
− Err0 | X0

]
,

∆∗
2|0(X0) = E

[
Err2I(S2 = 1)

π((X0, S1X1, S1), 2)
− Err0 | X0

]
.

However, a challenge arises in estimating ∆∗
1|0(X0) because Qd̂1

1 is not directly observable,
even for samples with S1 = 1. To address this issue, we define an estimated version of Err12
as follows:

Êrr
i

12 =

{
Erri12 if Si

2 = 1,

Erri1 + ∆̂12|1(X
i
0, X

i
1) if Si

2 = 0.

Replacing Err12 with Êrr
i

12 in the definition of Q1, we can define the ”observed” cumulative
loss of each sample as

Q̂i,d̂1
1 = Erri1I(d̂1(X

i
0, X

i
1) = 0) + Êrr

i

12I(d̂1(X
i
0, X

i
1) = 2).

Finally, we can estimate ∆∗
1|0(X0) and ∆∗

2|0(X0) by

∆̂1|0(X0) = argmin
∆∈H d

1|0

n∑
i=1

[
Q̂i,d̂1

1 · I(Si
1 = 1)

π̂((Xi
0), 1)

− Erri0 −∆(Xi
0)

]2
,

∆̂2|0(X0) = argmin
∆∈H d

2|0

n∑
i=1

[
Erri2 ·

I(Si
2 = 1)

π̂((Xi
0, S

i
1X

i
1, S

i
1), 2)

− Erri0 −∆(Xi
0)

]2
,

where π̂((X0), 1) is the estimated probability of P(S1 = 1 | X0), π̂((X0, S1X1, S1), 2) is the
estimated probability of P(S2 = 1 | X0, S1X1, S1). H d

1|0 ⊂ C(Rp0 ,R) and H d
2|0 ⊂ C(Rp0 ,R)

are the model spaces for ∆̂1|0 and ∆̂2|0, respectively.
Now we can define the corresponding d0 as

d̂0(X0) =


0 if 0 ≤ min

(
∆̂1|0(X0), ∆̂2|0(X0)

)
,

1 if ∆̂1|0(X0) < min{0, ∆̂2|0(X0)},
2 if ∆̂2|0(X0) < min{0, ∆̂1|0(X0)}.

3.3 Estimating π

In practical applications, the value of π is typically unknown. Fortunately, numerous meth-
ods have been developed to estimate this probability. In this study, we adopt a model-based
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approach for estimating π. To be specific, we have

π((X0), 1) = E[S1 | X0]

= argmin
π:Rp0→[0,1]

E [LCE(S1, π(X0)) | X0] ,

π((X0, S1X1, S1), 2) = E[S2 | X0, S1X1, S1]

= argmin
π:Rp0+p1→[0,1]

E [LCE(S2, π(X0, S1X1, S1)) | X0, S1X1, S1] ,

where LCE(S, x) = −S log(x)− (1− S) log(1− x) is the cross-entropy loss. As a result, we
can estimate π by

π̂((X0), 1) = argmin
π∈H π

1

n∑
i=1

LCE(S
i
1, π(X

i
0)),

π̂((X0, S1X1, S1), 2) = argmin
π∈H π

2

n∑
i=1

LCE(S
i
2, π(X

i
0, S

i
1X

i
1, S

i
1)),

where H π
1 ⊂ C(Rp0 , [0, 1]) and H π

2 ⊂ C(Rp0+p1 , [0, 1]) are the model spaces for π((X0), 1)
and π((X0, S1X1, S1), 2), respectively.

Regarding the specific training method of the model as a black box, we can estimate π
using the following algorithms:

Algorithm 1: Given X0, to estimate π((X0), 1)

Input: Yout = {Si
1}ni=1, Xin = {Xi

0}ni=1.
Training: Train a prediction model for the outcome Si

1 against the features Xi
0

using cross-entropy loss.
Output: Estimated π((X0), 1), denoted as π̂((X0), 1).

Algorithm 2: Given X0, S1X1, S1, to estimate π((X0, S1X1, S1), 2)

Input: Yout = {Si
2}ni=1, Xin = {Xi

0, S
i
1X

i
1, S

i
1}ni=1.

Training: Train a prediction model for the outcome Si
2 against the features

(Xi
0, S

i
1X

i
1, S

i
1) using cross-entropy loss.

Output: Estimated π((X0, S1X1, S1), 2), denoted as π̂((X0, S1X1, S1), 2).

3.4 Estimating m

Although sometimes we may know m in advance, it is more common that we need to
estimate m from the data we observed. This is actually a separate issue, but we plan to
address it together in this article.

Recall that we used a loss function L(Y,m(x)) to measure the difference between the
predicted outcome and the real outcome. The optimal m is natually defined as the minimizer
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of the expected loss, that is,

m∗
0(x0) = argmin

m0:Rp0→R
E[L(Y,m0(X0))],

m∗
1(x0, x1) = argmin

m1:Rp0+p1→R
E[L(Y,m1(X0, X1))],

m∗
2(x0, x2) = argmin

m2:Rp0+p2→R
E[L(Y,m2(X0, X2))],

m∗
12(x0, x1, x2) = argmin

m12:Rp0+p1+p2→R
E[L(Y,m12(X0, X1, X2))].

Without the nested sequential structure when estimating d, we can estimate each m
independently, which significantly simplifies the problem. However, we still need to address
the issue of informative missing data. Now we will discuss how to estimate for each m.
Firstly, since X0 are always available, we can simply estimate m0 by

m̂0 = argmin
m0∈H m

0

n∑
i=1

L(Y i,m0(X
i
0)), (8)

where H m
0 ⊂ C(Rp0 ,R) is the model space for m̂0.

When it comes to m1,m2 and m12, informative weights are required because of the
missing X1 and X2. Similar to the estimation of d, the following proposition provides the
required adjustments for the informative missingness.

Proposition 3 We have

E[L(Y,m1(X0, X1))] = E

[
L(Y,m1(X0, X1)) ·

I(S1 = 1)

π((X0), 1)

]
,

E[L(Y,m2(X0, X2))] = E

[
L(Y,m2(X0, X2)) ·

I(S2 = 1)

π((X0, S1X1, S1), 2)

]
,

E [L(Y,m12(X0, X1, X2))] = E

[
L(Y,m12(X0, X1, X2)) ·

I(S1 = 1)I(S2 = 1)

π((X0), 1)π((X0, S1X1, S1), 2)

]
.

Proposition 3 shows that for the estimation of m1 and m2, π((X0), 1)
−1 and π((X0, S1X1, S1), 2)

−1

should be used as the importance weights, respectively. Moreover, for the estimation of m12,
due to the inherent independence structure of the data, π((X0), 1)

−1×π((X0, S1X1, S1), 2)
−1

serves as the corresponding importance weight. As a result, we can estimate m1,m2 and
m12 by

m̂1 = argmin
m1∈H m

1

n∑
i=1

L(Y i,m1(X
i
0, X

i
1)) ·

I(Si
1 = 1)

π̂((Xi
0), 1)

,

m̂2 = argmin
m2∈H m

2

n∑
i=1

L(Y i,m2(X
i
0, X

i
2)) ·

I(Si
2 = 1)

π̂((Xi
0, S

i
1X

i
1, S

i
1), 2)

,

m̂12 = argmin
m12∈H m

12

n∑
i=1

L(Y i,m12(X
i
0, X

i
1, X

i
2)) ·

I(Si
1 = 1)I(Si

2 = 1)

π̂((Xi
0), 1)π̂((X

i
0, S

i
1X

i
1, S

i
1), 2)

,
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where H m
1 ⊂ C(Rp0+p1 ,R), H m

2 ⊂ C(Rp0+p2 ,R) and H m
12 ⊂ C(Rp0+p1+p2 ,R) are the model

spaces for m̂1, m̂2 and m̂12, respectively.
Notably, the weights utilized for estimating m are identical to those employed in the esti-

mation of d. This alignment not only enhances computational efficiency but also seamlessly
integrates the estimation of m within the overarching methodological framework.

3.5 Summary of the method

We summarize COST-Q as the following algorithm:
Algorithm 3: Flow of COST-Q

Input: {Y i, X i
0, S

i
1X

i
1, S

i
2X

i
2, S

i
1, S

i
2}ni=1, costs c1, c2, loss function L(Y,m(x)),

(optional) predictive models m0,m1,m2,m12.
Step 1: If m0,m1,m2,m12 are not given, estimate m̂0, m̂1, m̂2, m̂12 using the
method in section 3.4;

Step 2: Estimate π̂(X0), π̂(X0, S1X1, S1) using the method in section 3.3;
Step 3: Estimate d̂1(X0, X1) using the method in 3.1;
Step 4: Estimate d̂0(X0) using the method in 3.2.

4. Theoretical Results

To ensure clarity in the proof, especially in the convergence rate of the estimators, we
will add the superscript (n) to denote the sample size of an estimator. For example,
π̂(n)(X0)((X0), 1) = P(S1 = 1 | X0). Similarly, we will also use symbols like ∆̂

(n)
12|1, d̂

(n)
1 , m̂

(n)
1

to denote the corresponding estimators. Beside the notation already mentioned, we also
define

Q̂
(n),d1
1 = Q̂

(n),d1
1 (Y,X0, X1) = E

[
Err1I(d1(X0, X1) = 0) + Êrr

(n)

12 I(d1(X0, X1) = 2) | X0, X1

]

and

Êrr
(n)

12 =

{
Err12, if S2 = 1,

Err1 + ∆̂
(n)
12|1(X0, X1), if S2 = 0.

4.1 Convergence of d for incomplete data

In this section, we will discuss the convergence of our main method. It is worth noting that
we shall assume our m is optimal in the discussion in this subsection. We will prove the
acumulative loss, i.e. the Q-function, converges to the optimal Q-function, which shows the
convergence of our decision function d̂(n) to the optimal decision function d∗.

Below we list the assumptions we need for the convergence of COST-Q. Firstly, we need
to assume the boundedness of π and Err and the convergence of π̂.

10



Assumption 2 (Boundness and convergence of π̂) There exists a constant c0 > 0
such that

min{π((X0, S1X1, S1), 2), π((X0), 1)} ≥ c0,

min{π̂(n)((X0, S1X1, S1), 2), π̂
(n)((X0), 1)} ≥ c0,

for any X0, X1, X2, n. Moreover, we have

sup
(X0,S1X1,S1)

∣∣∣π̂(n)((X0, S1X1, S1), 2)− π((X0, S1X1, S1), 2)
∣∣∣ = op(n

−1/4),

sup
X0

∣∣∣π̂(n)((X0), 1)− π((X0), 1)
∣∣∣ = op(n

−1/4).

Assumption 3 (Boundedness of Êrr) There exists a constant c1 > 0 such that

0 ≤ Err0, Err1, Err2, Err12, Êrr
(n)

12 ≤ c1,

for any X0, X1, X2, n.

Moreover, to insure the convergence of d̂
(n)
1 , we need to assume the convergence of

corresponding nuisance models. We will also need similar assumptions for the convergence
of d̂(n)0 .

Assumption 4 Define

∆
(n)
12|1(X0, X1) = E

[
I(S2 = 1)

Err12

π̂(n)((X0, S1X1, S1), 2)
− Err1 | X0, X1, S1 = 1

]
,

and

∆̃
(n),(n0)
12|1 (X0, X1) = argmin

∆

n∑
i=1

I(Si
1 = 1)

[
I(Si

2 = 1)
Erri12

π̂(n0)((Xi
0, X

i
1, 1), 2)

− Erri1 −∆(Xi
0, X

i
1)

]2
.

Notice that we have ∆̃
(n),(n)
12|1 (X0, X1) = ∆̂

(n)
12|1(X0, X1). Then we have

sup
X0,X1,n0

{
∆̃

(n),(n0)
12|1 (X0, X1)−∆

(n)
12|1(X0, X1)

}
= op(n

−1/4),

11



Assumption 4 assumes that the estimated model converge uniformly to its expectation
form at the rate of op(n−1/4). Under this assumption, we can establish the convergence of
d̂
(n)
1 . However, since d1 is a binary decision function defined over a specific sample space,

directly addressing convergence in the function space introduces additional complexities. To
simplify the analysis, we instead focus on the convergence of the corresponding Q-function.
The following theorem shows the convergence of Qd̂

(n)
1

1 to Q
d∗1
1 .

Theorem 4 (Convergence of d̂1) We have Q
d̂
(n)
1

1 (X0, X1) ≥ Q
d∗1
1 (X0, X1), and

sup
X0,X1

{
Q

d̂
(n)
1

1 (X0, X1)−Q
d∗1
1 (X0, X1)

}
= op(n

−1/4).

The proof of Theorem 4 is provided in the supplementary material. Similarly, to further
ensure the convergence of d̂(n)0 , we also require similar assumptions for the convergence of
d̂
(n)
0 .

Assumption 5 (Convergence of ∆̂
(n)
1|0 , ∆̂

(n)
2|0) Define

∆̂
(n)

1|0 (X0) = E

I(S1 = 1)
Q̂

(n),d̂
(n)
1

1

π̂(n)((X0), 1)
− Err0 | X0

 ,

∆̂
(n)

2|0 (X0) = E

[
I(S2 = 1)

Err2

π̂(n)((X0, S1X1, S1), 2)
− Err0 | X0

]
.

Then we have

sup
X0

{
∆̂

(n)
1|0 (X0)− ∆̂

(n)

1|0 (X0)

}
= op(n

−1/4),

sup
X0

{
∆̂

(n)
2|0 (X0)− ∆̂

(n)

2|0 (X0)

}
= op(n

−1/4).

Based on Assumption 5 and the convergence of d̂(n)1 , we can finally establish the con-
vergence of d̂(n) to the optimal decision function d∗, which shows the effectiveness of our
main method.

Theorem 5 (Convergence of d̂) We have Qd̂(n)

0 (X0) ≥ Qd∗
0 (X0), and

sup
X0

{
Qd̂(n)

0 (X0)−Qd∗
0 (X0)

}
= op(n

−1/4).
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4.2 Convergence of m for incomplete data
Firstly, we need the following properties of the loss function.

Assumption 6 (Conditions for Loss function) L(y, ŷ) is a bounded loss function. That
is, there exists a constant c2 such that

|L(y, ŷ)| ≤ c2.

and L(y, ŷ) reaches its minimum L(y, ŷ) = 0 at ŷ = y.

Like in the proof of ds, we also require the convergence of corresponding nuisance models
to ensure the convergence of m̂.

Assumption 7 (Convergence of m) Define

m
(n)
0 (X0) = m∗(X0),

m
(n)
1 (X0, X1) = argmin

m
E

[
L(Y,m(X0, X1))

π̂(n)((X0), 1)
I(S1 = 1) | X0, X1

]
,

m
(n)
2 (X0, X2) = argmin

m
E

[
L(Y,m(X0, X2))

π̂(n)((X0, S1X1, S1), 2)
I(S2 = 1) | X0, X2

]
,

m
(n)
12 (X0, X1, X2) = argmin

m
E

[
L(Y,m(X0, X1, X2))

π̂(n)((X0, S1X1, S1), 2)
I(S1 = 1, S2 = 1) | X0, X1, X2

]
.

We have

sup
X0

{
m̂

(n)
0 (X0)−m

(n)
0 (X0)

}
= op(n

−1/4),

sup
X0,X1

{
m̂

(n)
1 (X0, X1)−m

(n)
1 (X0, X1)

}
= op(n

−1/4),

sup
X0,X2

{
m̂

(n)
2 (X0, X2)−m

(n)
2 (X0, X2)

}
= op(n

−1/4),

sup
X0,X1,X2

{
m̂

(n)
12 (X0, X1, X2)−m

(n)
12 (X0, X1, X2)

}
= op(n

−1/4).

Based on the above assumptions, we have the following theorem, which shows the conver-
gence of m̂.

Theorem 6 (Convergence of m̂) We have

sup
X0

{
m̂

(n)
0 (X0)−m∗

0(X0)
}
= op(n

−1/4),

sup
X0,X1

{
m̂

(n)
1 (X0, X1)−m∗

1(X0, X1)
}
= op(n

−1/4),

sup
X0,X2

{
m̂

(n)
2 (X0, X2)−m∗

2(X0, X2)
}
= op(n

−1/4),

sup
X0,X1,X2

{
m̂

(n)
12 (X0, X1, X2)−m∗

12(X0, X1, X2)
}
= op(n

−1/4).
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5. Simulation
In this section, we examine the performance of Algorithm 3 from extensive simulation studies
for various values of sample size n, data dimension p, also for different data generation
mechanisms and missing data patterns. Since COST-Q offers an optional choice of m, we
will also examine the performance of COST-Q with or without m given.

5.1 Comparable Methods
We are mainly in examining the performance of the proposed methods, i.e., COST-Q with or
without m given. However, to serve as a benchmark, we also include the following methods
as competitors.

1. BOWL: Kosorok (Zhao et al., 2015) proposed a method for addressing informative
missing data in the dynamic treatment regime (DTR) problem. When adapted to the
Sequential Lab Test problem, this method can be regarded as a benchmark. Specifi-
cally, the BOWL method assigns a weight to each action. For instance, when training
d1, BOWL assigns a weight of π((X0, S1, X1, S1), 2) to samples with S2 = 1, and a
weight of 1− π((X0, S1, X1, S1), 2) to all other samples.

2. Only-complete: We may only use the complete data to estimate the outcome, thus
addressing the problem of missing data. We can then estimate the outcome using
the complete data (i.e., samples with Si

1 = Si
2 = 1) and use the same method as in

COST-Q to estimate the optimal treatment regime. There is no need of estimating π̂
and Êrr in this method.

3. One-time: We may directly choose a choice of tests from {{0}, {1}, {2}, {1, 2}}
based on X0. We train regression models ∆̂1, ∆̂2, ∆̂12 to predict the expectation
of Err1 − Err0, Err2 − Err0, Err12 − Err0, and choose the choice of tests based
on the prediction. Moreover, to address the problem of missing data, we may give
weights to the samples based on the missing pattern.

5.2 Data Generation Mechanisms and Evaluation Metrics
To assess the performance of the proposed methods, we conduct simulations under a number
of scenarios imitating a multi-stage randomized trial. The complete data are generated as
follows:

1. Senario 1: M = 2. The outcome is generated through Y ∼ Ber(1/10). We set
X2 ∼ N(3, 0.5) when Y = 1, and X2 ∼ N(0, 0.5) when Y = 0. The other covariates are
generated as X1 = X2/2 + ϵ1, X0 = X1 + ϵ0, where ϵ1 ∼ N(0, 0.175), ϵ0 ∼ N(0, 0.25).
ϵ0, ϵ1, X2 are independent with each other. We set the cost of each test as c1 =
0.04, c2 = 0.3.

2. Senario 2: M = 2. The outcome is generated via

Y ∼ Ber(p), p = logstic(X0 +X1 + I(X1 > 1)X2),

where Xk are numbers, (X0, X1, X2)
⊤ ∼ N(0, 0.111⊤ + 0.9I), ε ∼ N(0, 1). We set

cost of each test as c1 = 0.02, c2 = 0.05.
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3. Senario 3: M = 2. The outcome is generated via

Y ∼ Ber(p), p = logistic(X⊤
0 1+X⊤

1 1+ ⟨I(X1 > 1), X2⟩),

where Xk are 3-dimensional random vectors, (X0, X1, X2)
⊤ ∼ N(0, 0.111⊤+0.9I), ε ∼

N(0, 1). We set cost of each test as c1 = 0.02, c2 = 0.05.

Moreover, the missing policy is as follows:

1. For Senario 1:

(a) Step 1: If X0 ≤ −0.3, stop with probability 0.8, choose X1 or X2 with proba-
bility 0.1. If −0.3 < X0 ≤ 0.3, choose X1 with probability 0.8, stop or choose X2

with probability 0.1. If X0 > 0.3, choose X2 with probability 0.8, stop or choose
X1 with probability 0.1.

(b) Step 2: If X2 chosen in step 1, stop the test. If X1 chosen in step 1, stop or
choose X2 with probability 0.8 and 0.2 if X1 ≤ −0.5, with probability 0.5 and
0.5 if −0.5 < X1 ≤ 0.5, and with probability 0.2 and 0.8 if X1 > 0.5.

If Xi is chosen above, we set Si = 1, otherwise Si = 0.

2. For Senario 2: We directly set missing probability as π((X0), 1) = π((X0, 0, 0), 2) =
logistic(X0)/2, and π((X0, X1, 1), 2) = logistic(X0 +X1)/2.

3. For Senario 3: We directly set missing probability as π((X0), 1) = π((X0, 0, 0), 2) =
logistic(X⊤

0 1)/2, and π((X0, X1, 1), 2) = logistic(X⊤
0 1+X⊤

1 1)/2.

5.3 Results
We will use COST-Q and other methods in section 3 in our simulation studies. We use
Neural Networks to estimate all the models.

In our simulation studies, we employ Neural Networks to estimate all the models. The
parameters of the Neural Networks are configured as follows:

We use a neural network with 2 hidden layers. Each hidden layer consists of 64 neurons.
The Adam optimizer is employed for training the network, with a learning rate of 0.001.
Cross-entropy loss is used as the loss function to measure the performance of the network.
A batch size of 10 is used during training. The network is trained for 100 epochs.

6. Application to XX Data
7. Conclusion
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A. Supplementary materials

A.1 Proof of Propositions in Section 3

Our proof relies only on Assumption 1, and is constructed through calculations involving
conditional expectations.
Proof [Proof of Proposition 1] Firstly, by Assumption 1, we have

E[Err1 | X0, S1X1, S1 = 1] =
E[Err1 · S1 | X0, X1]

P(S1 = 1 | X0, X1)
= E[Err1 | X0, X1].

Also, we have

E

[
Err12 ·

I(S2 = 1)

P(S2 = 1 | X0, X1, S1 = 1)
| X0, S1X1, S1 = 1

]
=E [Err12 | X0, S1X1, S1 = 1]

=
E[Err12 · S1 | X0, X1]

P(S1 = 1 | X0, X1)

=E[Err12 | X0, X1].

Adding the two equations above, we can get the desired result.

17



Proof [Proof of Proposition 2] Directly using Assumption 1, we have

∆∗
1|0(X0) = E [Q∗

1 − Err0 | X0]

= E

[
Q∗

1 ·
I(S1 = 1)

P(S1 = 1 | X0)
− Err0 | X0

]
∆∗

2|0(X0) = E [Err2 − Err0 | X0]

= E [E [Err2 − Err0 | X0, S1X1, S1] | X0]

= E

[
E

[
Err2 ·

I(S2 = 1)

P(S2 = 1 | X0, S1X1, S1)
− Err0 | X0, S1X1, S1

]
| X0

]
= E

[
Err2 ·

I(S2 = 1)

P(S2 = 1 | X0, S1X1, S1)
− Err0 | X0

]
.

Proof [Proof of Proposition 3] The result for m1 and m2 is trivial. We only prove the result
for m12.

Using Assumption 1, we have

E

[
L(Y,m12(X0, X1, X2)) ·

I(S1 = 1)I(S2 = 1)

P(S1 = 1 | X0)P(S2 = 1 | X0, S1X1, S1)

]
=E

[
E

[
L(Y,m12(X0, X1, X2)) ·

I(S1 = 1)I(S2 = 1)

P(S1 = 1 | X0)P(S2 = 1 | X0, S1X1, S1)
| X0, S1X1, S1

]]
=E

[
L(Y,m12(X0, X1, X2)) ·

I(S1 = 1)

P(S1 = 1 | X0)
· E

[
I(S2 = 1)

P(S2 = 1 | X0, S1X1, S1)
| X0, S1X1, S1

]]
=E

[
L(Y,m12(X0, X1, X2)) ·

I(S1 = 1)

P(S1 = 1 | X0)

]
=E

[
E

[
L(Y,m12(X0, X1, X2)) ·

I(S1 = 1)

P(S1 = 1 | X0)
| X0

]]
=E

[
L(Y,m12(X0, X1, X2)) · E

[
I(S1 = 1)

P(S1 = 1 | X0)
| X0

]]
=E [L(Y,m12(X0, X1, X2))] .

A.2 Proof of the convergence of d̂1

The goal of this section is to prove Theorem 4. We first introduce the following lemma.

Lemma 7 (Convergence of ∆
(n)
12|1) We have

sup
X0,X1

{
∆

(n)
12|1(X0, X1)−∆∗

12|1(X0, X1)
}
= op(n

−1/4).
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Proof According to Proposition 1, we have

∆∗
12|1(X0, X1) = E

[
I(S2 = 1)

Err12
π((X0, S1X1, S1), 2)

− Err1 | X0, X1, S1 = 1

]
.

Then, we have∣∣∣∆(n)
12|1(X0, X1)−∆∗

12|1(X0, X1)
∣∣∣

=

∣∣∣∣E [
I(S2 = 1)

Err12

π̂(n)((X0, S1X1, S1), 2)
− Err1 | X0, X1, S1 = 1

]
− E

[
I(S2 = 1)

Err12
π((X0, S1X1, S1), 2)

− Err1 | X0, X1, S1 = 1

]∣∣∣∣
≤E

[
I(S2 = 1) · Err12 ·

∣∣∣∣ 1

π̂(n)((X0, S1X1, S1), 2)
− 1

π((X0, S1X1, S1), 2)

∣∣∣∣ | X0, X1, S1 = 1

]
≤ 1

c20
E
[
I(S2 = 1) · Err12 ·

∣∣∣π̂(n)((X0, S1X1, S1), 2)− π((X0, S1X1, S1), 2)
∣∣∣ | X0, X1, S1 = 1

]
≤c1
c20

∣∣∣π̂(n)((X0, S1X1, S1), 2)− π((X0, S1X1, S1), 2)
∣∣∣ .

Taking supremum over X0, X1 and using Assumption 2, we can get the desired result.

With Lemma 7, we can prove Theorem 4.
Proof [Proof of Theorem 4] Using the definition of d∗1, we have

Q
d̂
(n)
1

1 (X0, X1) = E
[
Err1I(d̂

(n)
1 (X0, X1) = 0) + Err12I(d̂

(n)
1 (X0, X1) = 2) | X0, X1

]
≥ min

d1
E [Err1I(d1(X0, X1) = 0) + Err12I(d1(X0, X1) = 2) | X0, X1]

= Q
d∗1
1 (X0, X1).

Then we proceed to estimate the convergence rate. Setting n0 = n in Assumption 4 and
using Lemma 7, we have

sup
X0,X1

{
∆̂

(n)
12|1(X0, X1)−∆∗

12|1(X0, X1)
}
= op(n

−1/4). (9)

It is easy to see that a equivalent form of d∗1 is

d∗1(X0, X1) =

{
0, if 0 = min{0,∆∗

12|1(X0, X1)},
2,

19



Then we have

Q
d̂
(n)
1

1 (X0, X1)−Q
d∗1
1 (X0, X1)

=E
[
Err1I(d̂

(n)
1 (X0, X1) = 0) + Err12I(d̂

(n)
1 (X0, X1) = 2) | X0, X1

]
− E [Err1I(d

∗
1(X0, X1) = 0) + Err12I(d

∗
1(X0, X1) = 2) | X0, X1]

=E [(Err12 − Err1) | X0, X1] I(d̂
(n)
1 (X0, X1) = 2)

− E [(Err12 − Err1) | X0, X1] I(d
∗
1(X0, X1) = 2)

=∆∗
12|1(X0, X1)I(d̂

(n)
1 (X0, X1) = 2)−∆∗

12|1(X0, X1)I(d
∗
1(X0, X1) = 2)

=∆∗
12|1(X0, X1)I(∆̂

(n)
12|1(X0, X1) ≤ 0)−∆∗

12|1(X0, X1)I(∆
∗
12|1(X0, X1) ≤ 0)

=∆̂
(n)
12|1(X0, X1)I(∆̂

(n)
12|1(X0, X1) ≤ 0)−∆∗

12|1(X0, X1)I(∆
∗
12|1(X0, X1) ≤ 0)

+ (∆∗
12|1(X0, X1)−∆

(n)
12|1(X0, X1))I(∆̂

(n)
12|1(X0, X1) ≤ 0)

=min{0, ∆̂(n)
12|1(X0, X1)} −min{0,∆∗

12|1(X0, X1)}

+ (∆∗
12|1(X0, X1)− ∆̂

(n)
12|1(X0, X1))I(∆̂

(n)
12|1(X0, X1) ≤ 0)

≤2
∣∣∣∆∗

12|1(X0, X1)− ∆̂
(n)
12|1(X0, X1)

∣∣∣ .
Taking supremum over X0, X1 and using (9), we can get the result.

A.3 Proof of the convergence of d̂0

The goal of this section is to prove Theorem 5. Different from the proof of Theorem 4, we
need to tackle with Q̂, which should be convergent to Q∗ in some sense. We first introduce
the following lemma.

Lemma 8 (Convergence of Q̂1) We have

sup
X0,n0

∣∣∣∣E [
Q̂

(n),d̂
(n0)
1

1 (X0, X1)−Q
d̂
(n0)
1

1 (X0, X1) | X0

]∣∣∣∣ = op(n
−1/4).
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Proof We only prove the convergence of Q̂1. By the definition of Q̂1 and Q1, we have∣∣∣∣E [
Q̂

(n),d̂
(n0)
1

1 (X0, X1)−Q
d̂
(n0)
1

1 (X0, X1) | X0

]∣∣∣∣
=

∣∣∣∣E [
Err1I(d̂

(n0)
1 (X0, X1) = 0) + Êrr

(n)

12 I(d̂(n0)
1 (X0, X1) = 2) | X0

]
− E

[
Err1I(d̂

(n0)
1 (X0, X1) = 0) + Err12I(d̂

(n0)
1 (X0, X1) = 2) | X0

]∣∣∣
=

∣∣∣∣E [(
Êrr

(n)

12 − Err12

)
I(d̂(n0)

1 (X0, X1) = 2) | X0

]∣∣∣∣
=
∣∣∣E [(

Err12 − Err1 − ∆̂
(n)
12|1(X0, X1)

)
I(S2 = 0)I(d̂(n0)

1 (X0, X1) = 2) | X0

]∣∣∣
=
∣∣∣E [

E
[(

Err12 − Err1 − ∆̂
(n)
12|1(X0, X1)

)
I(S2 = 0)I(d̂(n0)

1 (X0, X1) = 2) | X0, S1X1, S1

]
| X0

]∣∣∣
=
∣∣∣E [

E
[
Err12 − Err1 − ∆̂

(n)
12|1(X0, X1) | X0, S1X1, S1

]
I(S2 = 0)I(d̂(n0)

1 (X0, X1) = 2) | X0

]∣∣∣
≤E

[∣∣∣E [
Err12 − Err1 − ∆̂

(n)
12|1(X0, X1) | X0, S1X1, S1

]∣∣∣ | X0

]
.

Since (Y,X1, X2) ⊥ S1 | X0, we have∣∣∣E [
Err12 − Err1 − ∆̂

(n)
12|1(X0, X1) | X0, S1X1, S1

]
=
∣∣∣E [

Err12 − Err1 − ∆̂
(n)
12|1(X0, X1) | X0, S1 = 0

]
I(S1 = 0)

+E
[
Err12 − Err1 − ∆̂

(n)
12|1(X0, X1) | X0, X1, S1 = 1

]
I(S1 = 1)

∣∣∣
=
∣∣∣E [

Err12 − Err1 − ∆̂
(n)
12|1(X0, X1) | X0

]
I(S1 = 0)

+E
[
Err12 − Err1 − ∆̂

(n)
12|1(X0, X1) | X0, X1

]
I(S1 = 1)

∣∣∣
=
∣∣∣E [

∆∗
12|1(X0, X1)− ∆̂

(n)
12|1(X0, X1) | X0

]
I(S1 = 0)

+
[
∆∗

12|1(X0, X1)− ∆̂
(n)
12|1(X0, X1)

]
I(S1 = 1)

∣∣∣ .
Taking supremum over X0, n0 and using Assumption 3, we can get the desired result.

Recalling Assumption 5 and the definition of ∆̂
(n)

1|0 , ∆̂
(n)

2|0 , we want to prove their convergence
to models that are closer to ∆∗

1|0 and ∆∗
2|0. Define that

∆
(n)
1|0 (X0) = E

[
Q

d̂
(n)
1

1 − Err0 | X0

]
= E

I(S1 = 1)
Q

d̂
(n)
1

1

π((X0), 1)
− Err0 | X0

 ,

∆
(n)
2|0 (X0) = E [Err2 − Err0 | X0] = E

[
I(S2 = 1)

Err2
π((X0, S1X1, S1), 2)

− Err0 | X0

]
.

We have the following lemma.
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Lemma 9 We have

sup
X0

{
∆̂

(n)

1|0 (X0)−∆
(n)
1|0 (X0)

}
= op(n

−1/4),

sup
X0

{
∆̂

(n)

2|0 (X0)−∆
(n)
2|0 (X0)

}
= op(n

−1/4).

Proof We only prove the convergence of ∆̂
(n)

1|0 . By the definition of ∆̂
(n)

1|0 and ∆
(n)
1|0 , we have∣∣∣∣∆̂(n)

1|0 (X0)−∆
(n)
1|0 (X0)

∣∣∣∣
=

∣∣∣∣∣∣E
I(S1 = 1)

 Q̂
(n),d̂

(n)
1

1

π̂(n)((X0), 1)
− Q

d̂
(n)
1

1

π((X0), 1)

 | X0

∣∣∣∣∣∣
≤E

∣∣∣∣∣∣ Q̂
(n),d̂

(n)
1

1

π̂(n)((X0), 1)
− Q̂

(n),d̂
(n)
1

1

π((X0), 1)

∣∣∣∣∣∣+
∣∣∣∣∣∣ Q̂

(n),d̂
(n)
1

1

π((X0), 1)
− Q

d̂
(n)
1

1

π((X0), 1)

∣∣∣∣∣∣ | X0


≤E

[
c1
c20

∣∣∣π̂(n)((X0), 1)− π((X0), 1)
∣∣∣+ 1

c0

∣∣∣∣Q̂(n),d̂
(n)
1

1 −Q
d̂
(n)
1

1

∣∣∣∣ | X0

]
=
c1
c20

∣∣∣π̂(n)((X0), 1)− π((X0), 1)
∣∣∣+ 1

c0
E

[∣∣∣∣Q̂(n),d̂
(n)
1

1 −Q
d̂
(n)
1

1

∣∣∣∣ | X0

]
.

Taking supremum over X0 on both sides, and using Assumption 2 and Lemma 8, we get

sup
X0

{
∆̂

(n)

1|0 (X0)−∆
(n)
1|0 (X0)

}
= op(n

−1/4).

Now, we convert the convergence of ∆ to the convergence of cumulative loss. We have
the following lemma.
Lemma 10 Define

d
(n0)
0 (X0) =


0, if 0 ≤ min{∆(n0)

1|0 (X0),∆
(n0)
2|0 (X0)},

1, if ∆(n0)
1|0 (X0) < min{0,∆(n0)

2|0 (X0)},
2, if ∆(n0)

2|0 (X0) < min{0,∆(n0)
1|0 (X0)}.

Then we have

sup
X0,n0

{
E

[
Err0I(d̂

(n)
0 (X0) = 0) +Q

d̂
(n0)
1

1 I(d̂(n)0 (X0) = 1) + Err2I(d̂
(n)
0 (X0) = 2) | X0

]
− E

[
Err0I(d

(n0)
0 (X0) = 0) +Q

d̂
(n0)
1

1 I(d
(n0)
0 (X0) = 1) + Err2I(d

(n0)
0 (X0) = 2) | X0

]}
=op(n

−1/4).
(10)
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Proof we have

E

[
Err0I(d̂

(n)
0 (X0) = 0) +Q

d̂
(n0)
1

1 I(d̂(n)0 (X0) = 1) + Err2I(d̂
(n)
0 (X0) = 2) | X0

]
− E

[
Err0I(d

(n0)
0 (X0) = 0) +Q

d̂
(n0)
1

1 I(d
(n0)
0 (X0) = 1) + Err2I(d

(n0)
0 (X0) = 2) | X0

]
=E

[
Q

d̂
(n0)
1

1 − Err0 | X0

]
I(d̂(n)0 (X0) = 1) + E [Err2 − Err0 | X0] I(d̂

(n)
0 (X0) = 2)

− E

[
Q

d̂
(n0)
1

1 − Err0 | X0

]
I(d

(n0)
0 (X0) = 1)− E [Err2 − Err0 | X0] I(d

(n0)
0 (X0) = 2)

=
[
∆

(n0)
1|0 (X0)I

(
d̂
(n)
0 (X0) = 1

)
−∆

(n0)
1|0 (X0)I

(
d
(n0)
0 (X0) = 1

)]
+
[
∆

(n0)
2|0 (X0)I

(
d̂
(n)
0 (X0) = 2

)
−∆

(n0)
2|0 (X0)I

(
d
(n0)
0 (X0) = 2

)]
=
[
∆̂

(n)
1|0 (X0)I

(
d̂
(n)
0 (X0) = 1

)
−∆

(n0)
1|0 (X0)I

(
d
(n0)
0 (X0) = 1

)
+
(
∆

(n0)
1|0 (X0)− ∆̂

(n)
1|0 (X0)

)
I
(
d̂
(n)
0 (X0) = 1

)]
+
[
∆̂

(n)
2|0 (X0)I

(
d̂
(n)
0 (X0) = 2

)
−∆

(n0)
2|0 (X0)I

(
d
(n0)
0 (X0) = 2

)
+
(
∆

(n0)
2|0 (X0)− ∆̂

(n)
2|0 (X0)

)
I
(
d̂
(n)
0 (X0) = 2

)]
=min{0, ∆̂(n)

1|0 (X0), ∆̂
(n)
2|0 (X0)} −min{0,∆(n0)

1|0 (X0),∆
(n0)
2|0 (X0)}

+
(
∆

(n0)
1|0 (X0)− ∆̂

(n)
1|0 (X0)

)
I
(
d̂
(n)
0 (X0) = 1

)
+
(
∆

(n0)
2|0 (X0)− ∆̂

(n)
2|0 (X0)

)
I
(
d̂
(n)
0 (X0) = 2

)
∈
[
−2

∣∣∣∆(n0)
1|0 (X0)− ∆̂

(n)
1|0 (X0)

∣∣∣− 2
∣∣∣∆(n0)

2|0 (X0)− ∆̂
(n)
2|0 (X0)

∣∣∣ ,
2
∣∣∣∆(n0)

1|0 (X0)− ∆̂
(n)
1|0 (X0)

∣∣∣+ 2
∣∣∣∆(n0)

2|0 (X0)− ∆̂
(n)
2|0 (X0)

∣∣∣] .
Moreover, according to Assumption 5 and Lemma 5, we have

sup
X0

{
∆̂

(n)
1|0 (X0)−∆

(n)
1|0 (X0)

}
= op(n

−1/4),

sup
X0

{
∆̂

(n)
2|0 (X0)−∆

(n)
2|0 (X0)

}
= op(n

−1/4).

Taking supremum over X0 and n0, we can get the result.

Finally, we are ready to prove Theorem 5.
Proof [Proof of Theorem 5] Firstly, it is easy to see that

Qd̂(n)

0 (X0) = E

[
Err0I(d̂

(n)
0 (X0) = 0) +Q

d̂
(n)
1

1 I(d̂(n)0 (X0) = 1) + Err2I(d̂
(n)
0 (X0) = 2) | X0

]
≥ min

d0
E

[
Err0I(d0(X0) = 0) +Q

d̂
(n)
1

1 I(d0(X0) = 1) + Err2I(d0(X0) = 2) | X0

]
≥ min

d0
E
[
Err0I(d0(X0) = 0) +Q

d∗1
1 I(d0(X0) = 1) + Err2I(d0(X0) = 2) | X0

]
= Qd∗

0 (X0).
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Then we proceed to estimate the convergence rate. By Lemma 10 we have

sup
X0,n0

{
E

[
Err0I(d̂

(n)
0 (X0) = 0) +Q

d̂
(n0)
1

1 I(d̂(n)0 (X0) = 1) + Err2I(d̂
(n)
0 (X0) = 2)

]
− E

[
Err0I(d

(n0)
0 (X0) = 0) +Q

d̂
(n0)
1

1 I(d
(n0)
0 (X0) = 1) + Err2I(d

(n0)
0 (X0) = 2)

]}
=op(n

−1/4).

(11)

We mention that (11) shows that we have a uniform convergence rate, which is inde-
pendent of X0 and the choice of d̂(n0)

1 .
Also, we have

E

[
Err0I(d

(n0)
0 (X0) = 0) +Q

d̂
(n0)
1

1 I(d
(n0)
0 (X0) = 1) + Err2I(d

(n0)
0 (X0) = 2) | X0

]
− E [Err0I(d

∗
0(X0) = 0) +Q∗

1I(d
∗
0(X0) = 1) + Err2I(d

∗
0(X0) = 2) | X0]

=min
d0

E

[
Err0I(d0(X0) = 0) +Q

d̂
(n0)
1

1 I(d0(X0) = 1) + Err2I(d0(X0) = 2) | X0

]
− E [Err0I(d

∗
0(X0) = 0) +Q∗

1I(d
∗
0(X0) = 1) + Err2I(d

∗
0(X0) = 2) | X0]

≤E

[
(Q

d̂
(n0)
1

1 −Q∗
1)I(d

∗
0(X0) = 1) | X0

]
≤ sup

(X0,X1)

∣∣∣∣Qd̂
(n0)
1

1 −Q∗
1

∣∣∣∣ .
As a result, taking supremum over X0 and using Theorem 4, we have

sup
X0

{
E

[
Err0I(d

(n0)
0 (X0) = 0) +Q

d̂
(n0)
1

1 I(d
(n0)
0 (X0) = 1) + Err2I(d

(n0)
0 (X0) = 2) | X0

]
− E [Err0I(d

∗
0(X0) = 0) +Q∗

1I(d
∗
0(X0) = 1) + Err2I(d

∗
0(X0) = 2) | X0]}

=op(n
−1/4
0 ).

(12)
Set n0 = n in (12), and add (11) and (12) together. Noticing that the op(n

−1/4
0 ) term is

also independent of X0, we have

sup
X0

{
Qd̂(n)

0 (X0)−Qd∗
0 (X0)

}
= op(n

−1/4).
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A.4 Proof of the convergence of m

Proof [Proof of Theorem 6] We only prove the convergence of m̂1, m̂12. Firstly, by the
definition of m1 and m∗

1, we have∣∣∣m(n)
1 (X0, X1)−m∗

1(X0, X1)
∣∣∣

=

∣∣∣∣E [
L(Y,m(X0, X1))

π̂(n)((X0), 1)
I(S1 = 1) | X0, X1

]
− E

[
L(Y,m(X0, X1))

π((X0), 1)
I(S1 = 1) | X0, X1

]∣∣∣∣
≤E

[∣∣∣∣L(Y,m(X0, X1))

π̂(n)((X0), 1)
− L(Y,m(X0, X1))

π((X0), 1)

∣∣∣∣ | X0, X1

]
≤E

[
c2
c20

∣∣∣π̂(n)((X0), 1)− π((X0), 1)
∣∣∣ | X0, X1

]
.

Taking supremum over X0 and using Assumption 2 and Assumption 7, we can get the
desired result for m̂1.

For m̂12, we have∣∣∣m(n)
12 (X0, X1, X2)−m∗

12(X0, X1, X2)
∣∣∣

≤E

[∣∣∣∣ L(Y,m(X0, X1, X2))

π̂(n)((Xi
0), 1) · π̂(n)((Xi

0, S
i
1X

i
1, S

i
1), 2)

− L(Y,m(X0, X1, X2))

π((Xi
0), 1) · π((Xi

0, S
i
1X

i
1, S

i
1), 2)

∣∣∣∣ | X0, X1, X2

]
≤E

[
c2
c20

∣∣∣π̂(n)((Xi
0), 1) · π̂(n)((Xi

0, S
i
1X

i
1, S

i
1), 2)− π((Xi

0), 1) · π((Xi
0, S

i
1X

i
1, S

i
1), 2)

∣∣∣ | X0, X1, X2

]
=
c2
c20

E
[∣∣∣π̂(n)((Xi

0), 1) ·
(
π̂(n)((Xi

0, S
i
1X

i
1, S

i
1), 2)− π((Xi

0, S
i
1X

i
1, S

i
1), 2)

)
+
(
π̂(n)((Xi

0), 1)− π((Xi
0), 1)

)
· π((Xi

0, S
i
1X

i
1, S

i
1), 2)

∣∣∣ | X0, X1, X2

]
≤c2
c20

E
[∣∣∣π̂(n)((Xi

0, S
i
1X

i
1, S

i
1), 2)− π((Xi

0, S
i
1X

i
1, S

i
1), 2)

∣∣∣+ ∣∣∣π̂(n)((Xi
0), 1)− π((Xi

0), 1)
∣∣∣ | X0, X1, X2

]
.

Taking supremum over X0, X1, X2 and using Assumption 2 and Assumption 7, we can get
the desired result for m̂12.

A.5 Detailed Comparable Methods

We are mainly in examining the performance of the proposed methods, i.e., COST-Q with or
without m given. However, to serve as a benchmark, we also include the following methods
as competitors.

1. BOWL: Kosorok (Zhao et al., 2015) proposed a method for addressing informative
missing data in the dynamic treatment regime (DTR) problem. When adapted to the
Sequential Lab Test problem, this method can be regarded as a benchmark. Specifi-
cally, the BOWL method assigns a weight to each action. For instance, when training
d1, BOWL assigns a weight of π((X0, S1, X1, S1), 2) to samples with S2 = 1, and a
weight of 1 − π((X0, S1, X1, S1), 2) to all other samples. Using this approach, the
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method defines

∆̂12|1(X0, X1)

= argmin
∆:Rp0+p1→R

n∑
i=1

[
Erri12 ·

I(Si
2 = 1)

π̂((X0, X1, 1), 2)
− Erri1 ·

I(Si
2 = 0)

1− π̂((X0, X1, 1), 2)
−∆(Xi

0, X
i
1)

]2
· I(Si

1 = 1),

as the estimator of d1. d0 is estimated in a similar way.

2. Only-complete: We may only use the complete data to estimate the outcome, thus
addressing the problem of missing data. We can then estimate the outcome using
the complete data (i.e., samples with Si

1 = Si
2 = 1) and use the same method as in

COST-Q to estimate the optimal treatment regime. There is no need of estimating π̂
and Êrr in this method.

3. One-time: We may directly choose a choice of tests from {{0}, {1}, {2}, {12}} based
on X0. We train regression models ∆̂1, ∆̂2, ∆̂12 to predict the expectation of Err1 −
Err0, Err2−Err0, Err12−Err0, and choose the choice of tests based on the predic-
tion. Moreover, to address the problem of missing data, we may give weights to the
samples based on the missing pattern. ∆̂1, ∆̂2, ∆̂12 are trained via

∆̂1(X0) =argmin
∆:Rp0→R

n∑
i=1

[
Erri1 ·

I(Si
1 = 1)

π̂((X0), 1)
− Erri0 −∆(Xi

0)

]2
,

∆̂2(X0) =argmin
∆:Rp0→R

n∑
i=1

[
Erri2 ·

I(Si
2 = 1)

π̂((X0, S1X1, S1), 2)
− Erri0 −∆(Xi

0)

]2
,

∆̂12(X0) =argmin
∆:Rp0→R

n∑
i=1

[
Erri12 ·

I(Si
1 = 1, Si

2 = 1)

π̂((X0), 1)π̂((X0, S1X1, S1), 2)
− Erri0 −∆(Xi

0)

]2
.
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